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In this paper we consider the problem [I] of the minimax of the time of encounter of two 

monotype controlled objects described by identical equations, with the condition that the 

integrals of the moduli of the controlling forces of both the tracking and the tracked objects 

have positive upper bounds. Such a constraint allows ‘impulse’ type jumps of objects on 

the phase plane. 

In [2] we consider the problem of the tracking of monotypic linear objects 

with the condition that the constraints on the control resources allow only continuous 

motions of the objects; it is shown, that an optimum control can be designed on the basis 

of the optimum control which realizes a time optimal response to the point (O,O), for the 

linear system, coinciding with the considered system and having a resource equal to the 

difference between the resources of the tracking and tracked systems. 

Following that idea, an optimal tracking can also be designed for the proposed 

problem. 

1. We shall consider the problem [I] of the minimax of time T elapsing before the 

encounter of the tracking motion (rl (t)) and the tracked motion (I~ (t)) described, res- 

pectively, by the equations 

h/l - = AY, + BUI, dt 
dzl - = 421 + Bz,l 
clt (1.1) 

Here, y1 and z1 are two-dimensional vectors of the phase coordinates of the controlled 

objects; u1 and v1 are scalar controls; A is a second order square matrix and B is a two- 

dimensional column vector. 

It is assumed, in agreement with [2], that the resources of the controls I~ (t) and v1 (t) 

which can be used when t >/Tat any instant 7, are constrained by the condition 

(1.2) 
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We shall assume that the systems (1.1) are fully controllable and this does not affect 

the generality [ 31. 

Therqthere exists a linear transformation [4] which brings the system (1.1) to the form 

(1.3) 

with the restrictions 

co 

s ,u,dt<M-_S lu[dt=p(T), 

03 

5 ~z+%Jv- 5 IvIdt==Y(‘6) (1.4) 

t‘ 0 T 0 

The restrictions allow controls in the form of impulse a-functions, thus the concept 

of encounter needs to be clarified. 

Let the points A and B have, at t = 7, the same coordinates and different velocities 

has 

Here p (7) is the reserve of the point A. 

Let us assume that for t = 7 the point B has received an impulsive control ut, which 

lead to a velocity jumps 

-. Z’(T) - VI = z’(‘t t- 0) 

If the control of the point A can be chosen as impulsive and such that 

5’ (a + 0)2 = y’ (7) + f.t 1 (VI) - z’ (z) - Yl = 0 

then we shall consider that the encounter occured for I = 7. 

This means, that the encounter does not occur for t = T, only when the moduIns of 

the difference of velocities satisfies the inequality 

i!/‘(t) - z’(.t + O)l>P CT) 

On the basis of such a definition of the encounter when the coordinates coincide, in 

order to avoid the encounter the point B must realize an impulse vv, satisfying the inequality 

!1/‘(?) - z’(z) - VII >/A Cc) 

Thus the point A can realize any admissible control 

designed on the basis of the knowIedge of the positions, velocities and reserves of both 

points, and also of the ‘intentions’ vr of the point R, if those intentions appear as im- 

pulsive type controls. 

We shall assume that the control of the point A is designed on the basis of that in- 

formation, not only in the case of coincidence of coordinates, but for all possible con- 

ditions 

U 1g (T), 2 (T), y’(z), z’(z)9 f-k (z), y CT), %I 

concerning the control v of the point R. In that respect the point R is discriminated f31 and 
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its control is designed only on 

of the points A and B 

the basis of the coordinates, velocities and the reserves 
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A pair of controls no and V’ and the time of encounter T”[lro, ~“1 will be called 

optimal, if for any u f no and u f u” the ineqnalities 

T [u, ~“1 > T” W’, ~“1 > T W’, VI 

are satisfied, where T [II, u”] and T [IA’, v] are the times of encounter for a non-optimal 

II and an optimal u”, or vice versa. Introducing the notations 

r (z) = Y (7) - 2 (Z)? X’(T) = y’ (z) - 2’ (T) 

we obtain the equation 

x” + bx’ + cx = u - v (1.5) 

with the constraints (1.4) on the controls. We shall re- 

present by t(7) the difference of the reserves 

Following Krasovskii we shall replace, the problem 

of the minimax T”(uo, no) under the conditions (1.5) and 

(1.4), by the problem of the time optimal response from 

the point [x (ho), i (ho)] to the point (0,O) for the equa- 

tion 

FIG. 1 

x- + bx’ + cx = w (1.6) 

with a constraint on the control w of the form 
co . 

s IwI~%E(~o) (1.7) 

To 
2. In [4] time optimal responses from the point (0.0) to the point (x, k) are considered 

as they appear in the solution of the problem (1.6) and (1.7). Reformulating those results 

for the time optimal response from the point [x (~a), ; (~a)] to the origin of the coordinates, 

we shall consider their properties for various distributions of the roots of the character- 

istic equation h’ + bh + c = 0 in the complex plane. 

lo. Case ir., = BL2 f iuJ* fir,, < 0. 

Let us assume that initially c(T,) = 1 ; let us direct the axis 4 downwards and re- 

present on the plane xi the domain D (h) (fig. l), bounded by the curves G, and the straight 

lines [a1 , b,] and [b, , a,]. The curves G f have the equations 

x =+ (P2 (- r), x’ = fqz (- a) (0 > - s> - I,) (2.1) 

Here cp 1 (0, cp z (t), ‘p r’(1), and qua’ is the normal system of independent solutions 

of the equation L + b; + cz = 0. 

The quantity b is the smallest positive root of the equation (pr (- 1,) = - 1. 

The time optimal response T”(xe, * 
. 

xe ) from the point e whose coordinates are (xe, x,), 

located inside the domain D (t2 1, begins with the impulse pro < 0 (if xe > 0). The quantities 

proand T are determined from the equations 
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5, +plo= t+ Pl” - lh1’(-- T”), % = (f 111” - l)ql,’ (- TO) (2.2) 

In order to determine plo and To graphically, it is sufficient to draw the straight line 

bl , c up to the point a, of intersection with the curve G_, and then draw the vertical e, e, 

to the point e, of intersection with the line 0, a,. The segment e, e, is the graphical re- 

presentation of the impulse ~1~. The point a, determines the value of the optimal time 

To = 80 < i,. The segment e,, 0 represents the impulse p1 which brings the point to the 

origin of the coordinates, and the curve e,, ep has the equation 

2 = (cL1” + l)q, (- 4, i = &“S Ucp,’ (- t) (-TO<-t GO) 

If the initial point d with coordinates x, i lies outside the domain D (t,), then the 

point follows its integral curve d, d, until it intersects the boundary of the domain D (t,), 

then the impulse - ~1 = (d,, d,) occurs, followed again by a segment of integral curve 

d, , d, and the impulse /.L~ = (d, , 0) which brings the point to the origin of the coordinates. 

In [4] the intuitively clear property is pointed out that, when the reserve 6 (TV) f 1, the 

optimal time and the impulse /.t, are calculated from the expressions 

2’ (2, i, E) = To (2 / E, 3.1 %A ll1(z, x.9 E) = %IL1O (5 1 E, 5’ i E) 

Here T’(z, &) and ~“~‘(x, x) represent the dependence of the optimal time and the 

first impulse on the coordinates of the initial point, with the condition, that the ‘reserve’ 

is equal to unity. 

Let us introduce new variables 

q1= z/E, qa= x’l% 

and let us represent the time optimal response on the ~~17~ plane, assuming, as previously, 

that the axis Q is directed downwards. 

The impulse pl’ < 0 moves the representative point from the point 11 1 (z,), 11 a (T,,) 

to the point 

x (Q) 
11 (To + 0) = 4 (To) - 1 IL,_ j 

x’ (to) + Pl 
’ q2 (To+ 0) = 4 (to) - 1 p1 1 

Taking (2.2) into consid-ration, we get 

Ill(zo+o)=q,(- 0, rla (TO + 0) =‘~n’ (- T) 

Consequently, the time optimal response on the plane vlqa ix represented by the 

broken path e, a,, aI, 0 (fig. 2). 

The time optimal response e, 4, al, 0 f rom a point inside the domain D (t,) begins 

by a jump e, a,, followed by a segment of integral curve aa. a, and ends with a jump pa, 

which brings us to the origin of the coordinates,provided that when e= i = z = 0, 

r)1=‘Ia=O). 

If the point d lies outside the boundaries of the domain D (t,), then d d, is an integral 

curve; it is followed by a jump ~1~ which brings the point onto the curve G_, and then after 

a time ta during which the point follows the curve there is a jump which brings the point 

to the origin of the coordinates. 

Let us produce the tangents [b,, b,) and [a,, a,). Together with [b,, b, 1 and [aI, aS) 
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FIG. 2 

which are the continuation of the axis qz, they form 

two angles cz and ,8 which are utilised later. (fig. 3). 

We shall now continue the graphical construction 

of the time optimal response, limiting ourselves to 

noticing the facts and referring the reader to [4] for the 

proof. 

29 %,8 = $19 f i~, #I,%> 0. The time optimal 

solution e, al, al, 0 is possible only from inside the 

closed domain I) (t,) of accessibility (fig. 3). 

The curves G+ are given by the equations (2.1) 

where h is the smallest positive root of the equation 

‘pl (6%) = - 1. 

If the i:ritial point is outside D (d the origin of the coordinates is not accessible. 

a9 k&Z = f iw are pure imaginary. Then ta = 57,‘~~ and the domain of accessibility 

I> ftJ is au ellipse with a unit vertical semi-axis equal to nnity and the ratio of the semi-axes 

equal to o (fig. 4). The time optimal response e, o, , a,. 0 is only possible from the points 

inside the ellipse and the origin of the coordinates is totally inaccessible from points 

outside the ellipse. 

FIG. 3 

4’. X, > 0, & < 0 are real roots of opposite signs. 

(fig. 5). The time optimal response and the accessibi- 

lity of the origin of the coordinates is possible only 

for points inside the band 

Iqaf- ~l>lQl,l 

FIG. 4 

Since the optimal time response T (ql, Q) -) 00 when the initial point is taken further 

away from the origin inside the band, we shall cell this domain L) (do). 

The curve al, a, f has the equation 

qr = -Cpe (-- t), rlz = -q+’ (-- Q (O<~<~) (2.41 

The time optimal response from a point e, located below this curve begins by a jump 

e, al along a line b,, e then follows the curve from a, to a1 and ends with a jump to the 

origin of the coordinates. 
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FIG. 5 

The time optimal response from a point e, , located above the curve (2.4) begins by a 

jump e, cr, along the line or, e, and then coincides with the previous response. 

So. When XX < 0 and 8I, = 0, the curve (2.4) coincides with the line gz - 1 = - h, Q . 

The rest is unchanged. 

So. When .&, = 0, & > 0, the domain D (m) is a parafleIogram a,, ut, b,, b, (fig. 6). 

These corresponds a finite time optimal response to each point of the parallelogram 

with the exception of the sides [b, , cat) and (a,, b,). The origin of the coordinates is 

inaccessible from the outside of the parallelogram or from points on those sides. The time 

optimal response from a point inside can be represented by the broken line e, a,, al, 0. 

79 When h, = 4 = 0, the parallelogram D (a?) becomes the band 9\< 1. Accessibility 

to the origin of the coordinates is possible from any point of the band with the exception 

of the half lines 

rl1= 1, 92<% la=- 1. %)a>0 

3. We shall now proceed with the construction of the optimal controls. 

3.1. Choice of the control no. Let some state of the system 

be inside or on the border of the domain D (ta) in the cases 1, 2 and 3 and inside or on 

the boundary of the domains of accessibility in the cases 4, 5, 6 and 7. 

We shall take for control no the time optimal response w”, constructed taking into 

account the ‘intentions’ of the point B 

For all the other possible cases of qr (T), rl2 (z), (7) and t(7), we shall assume 

the control a0 to be identically equal to zero. 

3.2. Choice of the control vO. 

3.2.1. If e(7) > 0 and the point is not inside the angles cx and /? and the sides 

Co,. a, ) and [b,, & 1, then v”= 0. 
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3.2.2. If t(T) > 0 and the point is inside the angles u or ,!3 or on the sides [a,, a, ) 

and [b,, b, ), then the control v” is of impulsive nature and realizes the entire reserve of 

v (7). 

From the above, it is clear that the jump of the representative point can be directed 

from the position e in either of two directions e o1 or e b, by choosing the sign of the 

impulse v 1. In agreement with this, we shall direct the jump from the angle u or the side 

[ a,* a5 ) towards the point (I~, and the jump from the angle 3 or the side [b, , b, ), to the 

point b,. 

3.2.3. If 5‘(T) = 0, we shall assume that the representative point is at infinity on the 

path 

r]I (1.) =z SX (T), r1, (T) = .KX? (A), o<s<c*; 

If that path does not intersect the boundary line of the angles u and p, we shall 

assume, in agreement with 3.2.1 that Y’S 0; if it does intersect the boundary line of 

either of those angles the control will be chosen according to 3.2.2. 

3.2.4. If t(7) < 0, we shall take U’S 0 everywhere, except inside the angles a, and 

/$ opposite to the angles U. and ,6. 

Inside those angles we shall take a control u” of impulsive nature and realizing 

the entire reserve. We shall direct the jump towards the point a, from the angle CL, and 

towards the point b, from the angle ,&. 

After concluding the construction of the controls U” and v” for all possible situations 

which might occur in the tracking process, we shall begin the proof of their optimality 

by a lemma. 

Lemma 3.3. If for t = 7 there is some state 

5 CT)1 x’ (‘c), E (T) 

located inside the angles u and ,6 or on the aides (cz~, a, ) and (b, , b, ) (with the exlusion 

of the points (I~, b,), or if for t = 7 a state [ (7) < 0 is realized inside the angles a, and 

pl, then as a result of the impulsive control u” given by the rules of sections 3.2.2. and 

3.2.3, a state 

x (T + O), 2’ (,Z + O), E (To + 0) 

is realized at the moment 7+ 0, such, that for t >/ 7 there is no possible control 

u [x (z), X’(T) + y (T), E (z) + 1%’ (7) 11 w lc would terminate the tracking before h’ h 

the time 7+ tl in the first case and which could terminate it altogether in all the other 

cases 2O to 7’. 

Proof. We shall assume that at first C(T) > 0 and also, without reducing the generality, 

thatTa (7) <0 and the point e [TI~(T),TI~(T)] 1’ les within the angle U. The jump v (7) 

will bring the increments (fig. 7) 

V (z) I v(t) I 
Aq1 = 4(T) + Iv(z) I ’ A% = 

1 - rl2 (z) sign I v(t) I 
4 (z) + I y (z) I 

assuming v (7) > 0, we shall have a displacement from the point e [q 1 @), q 2 (z)] 

along the line 
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‘12- 1 -_ 
tlz (r) - 1 - q& 

in the direction of the line a, e ‘and of magnitude 

i.e. after the jump, the point remains inside the angle u.. Reaching the point (0.0) from the 

angle @. requires a time known to be greater than f in the first case and is impossible at 

ail in the other cases. If ((7) = 0 we shall assume that the representative point is in the 

angle u., if the point of coordinates 

rll@) = s(2) /e; Ra = z’(2) /e 

is inside the angle u for a sufficiently small E > 0. Splitting the impulse v (7) into two : 

y (z) = e $ (Y (z) - E), will first bring the point inside the angle a, and then make it 

jump to the point interior to the angle. If the point Iies within the angle ,& and ((7) < 0, 

then, assuming vr = - v (2) <0, we have a jump from the point e [tlr (a), qz (z)] to 

the point e ; the increments are 

along the line 

in the direction e, bt towards the point e “, an d the magnitude of the jump satisfies the 

inequality 

(ARr2 + A@)“” = 
IV(f)/ 

E (r) + , v (r) I (ebl) > tebr) 

Consequently, the representative point falls inside the angle ,6. From there the center of 

the coordinates can only be reached in a time greater than C, in the first case, and is not 

accessible in the other cases. This constitutes the proof. 

Let us now prove the basic theorem. 

Theorem 3.4. The theorem consists of four statements. 

3.4.1. If the representative point has initia1 conditions x (TO), am, g (ho) > 0 

such that its position in the plane ‘1% Q is inside the domain D (t,) in the first case or in- 

side the domains of accessibility in the cases 2 to 7 and if the tracking object keeps the 

optimal control 

(3.1) 

then for any control o, such that u” has the same sign as u, including the case v = u”= 0 

(at every point, except aI, b,), the encounter occurs at the same instant 

r. + T (~2, u’) = zo + 2’ (a’-‘, d’) = z. + T’[q, (zo), qz (zo)l (3.2) 

where To I% (ho), % (~o)l is the optimal time to the origin of the coordinates for the 

problem 
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00 

s I w I a < E (TJ 
50 

3.4.2. If the tracking object follows the optimal control u”, and the tracked object 

realizes some control v, opposed in sign to the control u”, and if for this v and u * 0 some 

trajectory is obtained for ~~ < 7 < ~~ + E , the expenditure is 

on that portion of the trajectory and the following values are obtained 

5 @I + e) 
rll(% + 8) = 6 (Q) i_ 1 y, ) ’ 

5’ (TI -t 8) + y, 
Q(% t-&J = [(Zl)+IveI 

at the end point, then the encounter occurs not later than ~0 + T [ql (‘GO), ~2 (~31 
and the instant of encounter satisfies the inequalities 

7. + T [zP, cl < zl+ e + T 
[ 

z(n + 8) 2’ (TI t- 8) + VI 

E(Q) + I VI I ’ 4 (Zl) + I VI I I < 
(3.3) 

< ‘60 + To [VI CT>, 712 (TO)] 

3.4.3. If the tracked object follows an optimal control v” and the tracking object de- 

viates from the optimal law and realizes u $ u”, but in such a manner that the representa- 

tive point always remains inside the domain D (t,) in the first case and inside the domains 

of accessibility in the cases 2 to 7, then the tracking time is evidently greater than the 

optimal 

~0 + T (u, Q>fo + To [rll (TO), r2 (TO)] (3.4) 

and is equal to the optimal only when the control I( deviates from the optimal on the set of 

points of the zero measure, of the optimal trajectory. 

3.4.4. If the non-optimal control u drives the representative point outside the limits 

of the domain D (b) in the first case, or satisfies the inequality ((7,) < 0, and the tracked 

object keeps following the optimal control v”, then the encounter occurs obviously after 

70+ 8. 

‘to + 2’ (~1 ~“1 >‘to + t2 (3.5) 

3.4.5. If in the cases 2 to 7, the non-optimal control <u> drives the representative 

point outside the boundaries of the domain of accessibility, or satisfies the inequality 

6 (7,) < 0. then for an optimal v = v” and T>,T, the encounter of the objects is altogether 

impossible. 

We shall now proceed to the proofs of the statementsof the theorem. 

3.4.1. Proof. Let us assume that for t = 7. the representative point is inside the 

domain of accessibility at the point e (fig. 71, and let us assume that at that instant the 

point B is taken by the impulse v1 into the point e’(~,), in agreement with the constraints 

u” = w” for any II, > 0 ; at the instant t = T,, + 0 the representative point reaches the curve G 

at the point oa (7, + 0). 
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FIG. 7 FIG. 8 

Let us now assume that after 7u + 0 there is a continuous or impulsive admissible 

control v < 0. This means that for any E > 0 

7-1 E 

c 
2, tit < 0 

Since no= w”, the inequality 
t 

s+e=o T-fE 

s 
il dt - 

s 
v dt = 0 

5 j-e 7 

is satisfied for arbitrarily small E . 

This means that u” - u”= UI’ at all points of the trajectory with the exception of the 

set of points of zero measure, and the encounter occurs when 

To -t I’ [CL, VO] == z* 5 T I~t(Zo), ~z(Zo)l 

3.4.2. Proof. Let us assume, in agreement with the condition 3.4.2. that the realiza- 

tion of a v of sign opposite to that of zu” begins when 7r > 70 and let us assume that when 

r~(~)=O;rr<~<~~-t-e,andthatattheinstant ‘tr + t: we have the state 

z (zr -;- E); i (ri + E), E (T, -b &), represented by the point e” (rr + E) on the fig. 8. It 

is obvious that since m” and v have opposite signs, the control t, speeds up the attainment 

of the axis Q even for II = 0 ; thus if 71 + 37 is the time at which the point a’; (7, + /17f 

will be reached from the point u; (7, ) when following the curve G_, then 1: i -+ i is 

evidently smaller than 7i + 11~. Since the optimal control tuO [qi(rr + e),q 2 @i-k&)] 

yields the jump e “, o’; , then subsequently the time to reach the beginning of the measure 

does not exceed the time To 111 t (t r m/- E),Y)~ (rr f E)]. This proves the inequality (3.4.2.). 

3.4.3. Proof. With those conditions, the representative point can remain inside the 

domain II (t,) or inside the domain of accessibility onIy if 

T 
1 

s 
/I(. I dt < 5 (zo) 

-c” 
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inside the domain u”= 0. This means that if u deviates from the optimal time to reach the 

point (O.O), then the instant of encounter satisfies the inequality 

3.4.4. Proof. Let us assume that in the first case the condition t (7,) < 0 is satisfied, 

and that the representative point is located inside the angle b,, aI, a5 (fig. 8) which com- 

plements the angle u to 7~. It can be shown, as was done for the lemma 3.3, that any 

admissible jump cr, directed towards the point a1 leaves the representative point inside 

this angle. Any continuous portion of curve located in the third quadrant inside the angle 

b,, aI, as, cannot lead to the realization of the equality q1 =O because the signs of x and 

i coincide in that quadrant. Obviously a continuous portion inside the angle 8 does not 

satisfy the equality 91 = 0 either. Consequently, either the encounter cannot be realized 

at all, or the point enters inside the angle u,. According to the lemma, the impulsive 

control v0 transfers the point from the angle U, into the angle aand, consequently, the 

eucounter cannot occur before t,. 

Let us assume that the state [(T,) > 0 h as been realized and that the point 

e1 hl @I), q2 @s)l is inside the angle b,, aI, a, and not inside the domain D (t, ). As in 

the previous case it is easy to show that if the point remains all the time inside the 

angle bS, b,, a3 the encounter cannot occur. If the point enters the baud a,, aI, b,, a,, then 

any control II can only increase the distance a1 m between the point aI and the point m of 

intersection of the curve e, m with the straight line al, a,. 

The curve e, m is the integral line obtained for t > 7,. if for T> 7,. we take II (7) = 0. 

Fig. 8, also show the curve e,‘m, obtained, if at 7= 7;, a small impulse cr, of the control u 

is applied and removed. This means, that for any control a, which leaves e(7) > 0, either 

the encounter does not occur at all or the representative point falla inside the angle u 

before the encounter, and an impulsive control u” leads to a situation such that the 

encounter can occur only after a time greater than t, has elapsed. If from a point inside 

the angle b,, aI, a, the tracking object realizes an impulse F leading to the situation 

E 61) -I~lI< 0, then the representative point makes a jump into the left half-plane. 

The consequences of this jump lead to the situation [(7, + 0) < 0 which has been considered 

above. 

3.4.5. Proof. The proof concerning the cases 2 to 7, when &T,) <0 is the same as 

in 3.4.4. The only difference is, that, the impulse v (7,) which brings the point inside the 

angle aeliminates the possibility of a future encounter. If c(7,) > 0 and the point 

e [rll (‘rl),q12 (T&J is outside the domains of accessibility in the cases 2 and 3, then the 

proof repeats 3.4.4., with the same difference as far as the conclusions are concerned. 

In the case 4. a point located, for q1 (7,)‘> 0, outside the domain of accessibility, 

and outside the angle CL, definitly falls inside the angle b,, b,, a, and remains there for 

any control P which keeps 5 (7) >/ 0. Th e outsides of the domains of accessibility have 

analogous properties in the cases 5 to 7 when C(T) >/O. 

This ends the proof of the theorem 3.4. 

However, one should not think that the control u”given by the laws 3.2.2. and 3.2.3. 

is the only one in the sense of its final results, i.e. of a maximum reduction of the time 

necessary for the encounter. 
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There is obviously no better control in the cases 2 to 7. In the first case it does not 

appear as the best one, since it delays the encounter by the quantity 6, which is clearly 

not the maximum one of all those possible. Indeed, let us assume that at the initial instant 

we have the following conditions 

i.e. 

rll 60) = 0, E CroJ > 0, %? cc*) > $7 pfz’ 6Of = s-Go) iyl (r(o) 

Since ~2 (~a) < 7%’ (ho), the optimal time with the reserve F (~a) will be smaller 

than the optimal time with the reserve c(~a), but larger than ta since the point (0, qz’) 

is outside the domain D fb). 

t, < To IO, rl;l < To 1% q, (~31 

If, following the recommandation 3.2.2., we realize the impulse t/ (7,) > 0, then for 

r= 7o + 0 the conditions 

%(2e + 0) = 0, rip (‘Go + 0) = Tal (To) 

are met, and the optimal time is equal to To IO, Q' (T,)]. Let us reject the law 3.2.2, 

and choose a different tactic, namely, for 6 (7) >,O we take TV m 0, and for t (7) < 0, 

Y = 0 everywhere, exceptb the segment of axis ql = 0, 0 < 1 r), I< 1. Inside this 

segment, we can take Y of impulsive nature and directed towards the point 6,. For 

((7) >/O the encounter cannot occur earlier than at the instant 

%a t To fO, qa (2.0)1 

If, on the other hand, Q(7) b ecomes negative, then the representative point cannot 

get inside or on the boundary of the segment ql = 0, 0 < \91I< 1 in a time smaller 

than T“ i0, 9% (r&I- 

However, the impulsive control I/ (?-I, in that case ‘throws’ the representative point on 

the axis qx = 0, definitely beyond the point bl, i.e. inside the domain D (b) and consequent- 

Iy the encounter cannot occur earlier than a time $a after that ‘throw’. To sum up, if the 

point B follows the proposed control v, the encounter does not occur in any case before 

the time 

This control does not appear, generally speaking, as optimaf. The construction of tbe 

optimal controls p” and t1’ in the first case, inside the domain D (a f, goes beyond the 

framework of the present paper. 
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